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Resonance-assisted hydrogen bonding is treated by the simple quantum-mechanical model of a particle on a
ring with different effective masses in the hydrogen bond and in the conjugated segment attached to its ends.
The model is applied to an intramolecular hydrogen bond and extended to a hydrogen-bonded dimer and
rings of arbitrary size up to an infinite chain of molecules, thus covering the main patterns of bonding identified
by graph-set analysis. Analysis of intramolecular hydrogen bonding yields an electron effective mass in the
hydrogen bond segment of about 34 electron masses. Conjugation always lowers the energy, but the lowering
per molecule decreases with increasing ring size, that for the chain being one-third of that for the intramolecular
hydrogen bond. This result rationalizes a predominance of intramolecular hydrogen bonds and dimer rings,
given that geometrical factors also affect bonding.

Introduction

The role of hydrogen bonds as a structural organizing feature
in chemistry and biology is well-known. In particular, there has
been extensive work to classify and interpret the structural motifs
associated with hydrogen bonds within and between molecules
in crystals. For example, graph-set analysis1,2 has been used to
identify four basic patterns of hydrogen bonding: an intramo-
lecular or self-bond ring (S), a dimer ring (R), an infinite chain
(C), and other finite or discrete patterns (D). Such classification
is extremely useful in providing a soundly based taxonomy for
describing the diversity of hydrogen bonding patterns in crystals.
It would be even more useful if in addition to this codification
there were a physical picture of similar scope and generality
that would help to interpret and rationalize the observed
diversity. The present paper seeks to provide such a model.

The Ferrara group3-8 has surveyed experimental results which
show that noticeably short hydrogen bonds with the hydrogen
atom nearly at the center occur in systems of the general
structure -X-H‚‚‚Xd, where the two identical X atoms
(homonuclear hydrogen bonding) are connected by a conjugated
π-electron system. This in turn requires an odd number of atoms
in the π system. It is plausible that in such systems the two
resonance hybrids of theπ system, which require the transfer
of the H atom from one X atom to the other, as illustrated in
Figure 1, should lead to an equalization of bond lengths not
only in theπ system, as usual, but also in the hydrogen bond
system. More recently, the Ferrara group has also provided
evidence that suchresonance-assisted hydrogen bondingmay
also occur when the two electronegative atoms X are not the
same (heteronuclear hydrogen bonding).9-13 Because hydrogen
bond strength is exponentially dependent on length,14,15 mech-
anisms for shortening hydrogen bonds are of particular signifi-
cance.

The substantial theoretical literature on hydrogen bonding has
employed both the valence-bond and molecular-orbital models.16

The resonance-assisted mechanism for strong hydrogen bonding
starts from the valence-bond model, which has the advantage
of permitting the use of curly arrows to show how the resonance
hybrids are related. This, of course, is a familiar and productive
approach in chemistry. On the other hand, valuable insights into
conjugated systems are also obtained from the molecular-orbital
model, where delocalization is built in at the start. Some of
these insights are available even in highly simplified quantum
mechanical models such as the particle in a box or on a ring.
The particle in a box model is invoked in elementary chemistry
to rationalize such matters as the red shift in optical spectra of
conjugated polyenes with increasing chain length. The particle
on a ring model is perhaps less familiar but is used in
understanding NMR shielding and deshielding at different
positions near a benzene ring in terms of a ring current17 and
as the perimeter free electron orbital model in classifying the
excited states of aromatic hydrocarbons.18 Here we explore a
highly simplified but useful conceptual model for resonance-
assisted hydrogen bonding in terms of a particle on a ring. We
consider first the intramolecular hydrogen bond (type S) and
then extend the treatment to the dimer (type R) and hence to
larger rings, culminating in the infinite ring, which corresponds
to the infinite chain (type C) with cyclic boundary conditions.
Thus, we treat the three main graph set patterns.

Model for the Intramolecular Hydrogen Bond. For the
intramolecular hydrogen bond (type S), the basic model consists
of a ring of radiusR divided into two segments. One segment
that we label b represents the hydrogen bond-X-H‚‚‚Xd and

* To whom correspondence should be addressed.
† UMIST.
‡ University of NebraskasLincoln.

Figure 1. Structural pattern for resonance-assisted hydrogen bonding.
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the other segment that we label c represents the conjugated
system that connects the two X atoms. An electron moves in
segment c with an effective massmc and in segment b with an
effective massmb, where the concept ofeffectiVe massis
borrowed from solid-state physics. As explained in standard
solid-state physics texts, a particle at the bottom of an energy
band moves as though it has a mass determined by the inverse
of the curvature of the band, a quantity that may differ markedly
from the normal inertial mass of the free particle. Here it allows
for the fact that the mobile particle is not an isolated electron
but an electron that is interacting with other electrons and with
nuclei. In particular, it enables us to use electron transfer in the
hydrogen bond as a surrogate or alias for proton transfer from
one side to the other of the hydrogen bond, because the two
transfers are strongly correlated.19 We expectmb > mc, because
the transfer of an electron through the hydrogen bond region
requires significant movement of the much heavier hydrogen
nucleus. In any case, we expectmb to change markedly if we
replace hydrogen by deuterium, thus providing us with a
mechanism for an isotope effect.

The position of the electron on the ring is described by an
angular variableP (0 e P e 2π). The bond segment b
corresponds to 0e P e 2πf and the conjugated segment c to
2πf e P e 2π. Heref is the fraction of the ring that is occupied
by the hydrogen bond. This changes with the length of the
conjugated system, which is known to modify the hydrogen
bond characteristics.3-8 The parametersf and R are directly
related to the chemical system being considered. The hydrogen-
bond segment b comprises three atoms and the conjugated
segment c comprises an odd number of atoms, as Figure 1
indicates. The whole chemical ring therefore comprises an even
number of atomsn and, hence, the same number of bonds. Two
of these bonds comprise segment b, and hence,f ) 2/n. If we
suppose that each bond contributes the same lengthd to the
model ring, then the circumference isnd andR ) nd/2π. One
could alternatively treat the chemical ring as a regular polygon
with n sides of lengthd and take the model ring as the
circumscribed circle, in which caseR ) d/(2 sinπ/n). For large
n, these treatments become equivalent.

The wave function of the system isψb in segment b andψc

in segment c. For energyE, the time-independent Schro¨dinger
equation in the two segments is

HerembR2 corresponds to the moment of inertia of the electron
in segment b andmcR2 to that in segment c. Set

so thatLb and Lc (which may be positive or negative corre-
sponding to opposite senses of circulation) are the classical
angular momenta in segments b and c, where we shall setLb )
FLc so thatF2 ) mb/mc. Then eqs 1 and 2 have solutions

The solutions are subject to the boundary conditions that the

wave functions must be equal at the ends where the segments
join. The first boundary condition isψb(0) ) ψc(2π), i.e.

and the second isψb(2πf) ) ψc(2πf), i.e.

Substitution from (6) into (7) and expressingLb in terms ofLc

yields

By comparison with the result exp(2πik) ) 1 for integerk, we
find that the angular momentum in segment c must be quantized
in the form

wherek is a nonzero integer. Hence the energy in statek is

It follows that a single electron in the lowest level has energy

Given the quantized value of the angular momentumLc, one
obtainsLb at once asF > Lc. From eqs 4-6, the wave function
in the two segments is given in terms ofLc by

The real part of the total wave function fork ) 1 is plotted in
Figure 2 for parameter valuesf ) 1/3 (corresponding to one
hydrogen bond in a six-membered ring) andF ) 5. In the
hydrogen-bonded segment, which lies at the bottom right-hand
corner, the wave functionψb varies only slowly, but in the
conjugated segment,ψc varies much more rapidly, owing to
the additional factorF that multipliesP in eq 13 compared with
eq 12.

Usually energy changes are more significant than energies
themselves. Here the question is what effect the resonance
assistance has on the hydrogen bonding, and therefore, we must

Figure 2. Real part of the wave function forf ) 1/3 andF ) 5.
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consider the isolated hydrogen bond. In the absence of the
conjugated segment of the ring c, the hydrogen bond comprises
just segment b, for which we shall use the label B instead of b.
The wave function in this segment is still given by eq 4, but
the boundary conditions becomeψB(0) ) 0 ) ψB(2πf). The
solutions in this instance are not traveling waves as those in
eqs 4 and 5, but standing waves obtained by combining
degenerate solutions (4) with equal and oppositeLB. As for an
electron in a box, the solution that satisfies the boundary
condition at the originψB(0) ) 0 follows if the combination
leading to a sine function is taken, i.e.

The other boundary conditionψB(2πf) ) 0 yields

and henceLB must be of the form

whereK is a nonzero integer. The energy is then

(where the superscript zero denotes the unconjugated hydrogen
bond), so that an electron in the lowest level has energy

We can now compareEl
0 (without conjugation) withEl (with

conjugation). Becausef < 1, El has a larger denominator than
El

0 and, hence, is smaller. The energy lowering per electron is

This is zero whenf ) 1, because then there is no conjugated
segment in either case. It also tends to zero asFf/(1 - f) f ∞
for f * 1, when the two terms in the square bracket in eq 19
become equal. IncreasingF, as happens on deuteration, thus
reduces the energy lowering produced by the conjugated
pathway. Increasing the radiusR of the ring can also be seen to
reduce the energy lowering.

With f andR expressed in terms of the number of bondsn
and the bond lengthd, the energy lowering per electron becomes

For n . F, ∆E1 reaches its maximum valueh2/8mbd2, which is
just the lowest energy of a particle of massmb in a box of length
d. Increasing the length of the conjugated chain thus increases
the stabilization of the hydrogen bond toward this value.

The Ferrara group characterizes resonance-assisted hydrogen
bonds by a parameterλ derived from the bond lengths in the
hydrogen-bonded system.3-8 This parameter ranges from 0 to
1 as the hydrogen bonding varies from complete localization

of the proton on one side to complete localization on the other,
so that a value of1/2 corresponds to complete delocalization.
The present model envisages complete delocalization as one
limit, with complete localization on either side as the other.
Intermediate situations are represented by a mixture in which
the fractional contribution of the delocalized model depends on
an auxiliary parameterê that we define to equal 4λ(1 - λ),
which takes the value unity forλ ) 1/2 and zero forλ ) 0 or
1. The energy lowering relative to completely localized hydrogen
bonding is then consistent with Figure 2 in ref 3. This shows
that for S-type intramolecular hydrogen bonds the oxygen-
oxygen distance (which serves as a surrogate for the hydrogen
bond energy) has a dependence onλ that is symmetric aboutλ
) 1/2 and is roughly parabolic.

We have explored this idea using our model to analyze the
data for oxygen-oxygen distances, taking values of the
parameterλ from ref 3 and converting the oxygen-oxygen
distances to hydrogen bond energies using a procedure described
in the literature.7 We then examined the hydrogen bond energies
as a function ofê by linear regression againstê, ê2, andxê. In
practice, owing to the large scatter in the data, all of these simple
fits give values of the squared correlation coefficientr2 of 0.6-
0.7, so that none can be preferred on the grounds of a statistically
superior fit. However, only the regression onê2 gives a
reasonable unconstrained value of the hydrogen bond energy
in the absence of resonance assistance (the intercept atê ) 0),
namely, 17 kJ mol-1. This is consistent with a model in which
ê determines the contribution from the conjugated structure to
the wave function, because thenê2 determines the contribution
to the energy. For this plot, the slope is 52 kJ mol-1, which we
equate to 2∆E1 for two electrons in the bond. We have∆E1

given by eq 21, in whichn ) 6 (f ) 1/3) for the structures under
investigation, for which we taked ) 1.344 Å as the average
bond length in the unperturbed geometry.3

Takingmc as the usual electron inertial massme leads finally
to a value ofF ) 5.85, so that the effective mass of the electron
in the hydrogen bond segment ismb ) 34.2me. Clearly, this is
much higher than the electron inertial mass but much lower
than the inertial mass of the proton,mp ) 1836me. This is
consistent with the use of the electron motion as a surrogate
for the proton motion, where the effective mass represents the
curvature of the potential energy in which the electron moves
and hence differs from the inertial mass. In our model, the
electron that represents the proton certainly moves more slowly
than a normal electron, but the reduction is less than the ratio
of the proton and electron inertial masses would suggest,
implying that the electron movement takes place in a rather flat
effective potential.

We can also compare our results for the ring with the two
segments with those for a simple conjugated ring of the same
size in which two more conjugated bonds replace the hydrogen-
bonded segment. In such systems, the ring current model17

affords insights into the NMR spectrum. Applying a magnetic
field perpendicular to the ring induces a circulation of current
around the ring equivalent to an induced magnetic dipole
moment. This induced moment produces an additional magnetic
field that deshields nuclei outside the ring (and shields nuclei
inside it, such as the protons held over the ring inpara-
cyclophanes) to an extent that depends inversely on the effective
mass of the circulating electrons. For the simple conjugated ring,
with no hydrogen bond, the energy in the lowest level is
obtained from eq 10 withf ) 0. Comparison with eq 10 itself,
describing the ring with the hydrogen bond, shows that the
effective mass has been increased by the factor (1- f + >f)2.
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It follows as a prediction from our model that the deshielding
of nuclei outside the ring with the hydrogen bond should be
reduced by this factor relative to a simple conjugated ring of
the same size. As noted earlier, deuteration increasesF, which
reduces deshielding still further. On the other hand, stronger
hydrogen bonds have lower energies that correspond to reduced
values ofF and, hence, lead to less reduction in the deshielding.
The Ferrara group has reported a strong correlation between
proton NMR shifts and hydrogen bond strength,8 but this
concerns the hydrogen atom that forms part of the hydrogen-
bonded system. In our model, this atom is considered as lying
on the ring rather than outside it, and the ring-current model is
then uninformative.

Extension to Hydrogen-Bonded Dimers and Beyond.We
now consider the extension of our treatment to a hydrogen-
bonded dimer (type R) comprising two conjugated segments,
labeled c1 and c2, and two hydrogen-bonded segments, labeled
b1 and b2. To make comparisons with the intramolecular
hydrogen bond for the monomer, we take a total ofn atoms for
each molecule, of which three form each hydrogen bond. Hence,
there are 2n atoms and 2n bonds in total, with two hydrogen-
bonded segments of two bonds each. As a result, each segment
b1 and b2 occupies a fraction 1/n of the whole ring, whereas
together they occupy the fractionf ) 2/n, the same as that for
the intramolecular hydrogen bond. Corresponding segments are
equivalent, so the effective masses are the same as before:mc

in the conjugated segments andmb in the hydrogen bond
segments.

In the different segments, the wave functions areψbi andψci,
wherei ) 1 or 2. They obey Schro¨dinger equations such as (1)
and (2) which we solve as before by expressing the energyE
in terms of classical angular momenta to obtain solutions of
the forms (4) and (5) and applying suitable boundary conditions.
The boundary conditions at the hydrogen bonds between
different molecules areψb1(0) ) ψc2(2π) andψc1(π) ) ψb2(π),
whereas those within the individual molecules areψb1(πf) )
ψc1(πf) andψb2(π + πf) ) ψc2(π + πf). Note that, for ease of
comparison, the fractionf is defined to be the same as that for
the monomer: each hydrogen bond subtends half the angle it
did in the monomer, but this is the same fractionf of π, which
is half the total angle 2π. The procedures applied for the
monomer then lead to exactly the same quantization condition
as before, eq 9. The primary difference from the monomer case
is that the size of the ring is doubled for the dimer, and as a
result, the energy eigenvalues are all a factor of 4 smaller than
those in the monomer.

From this derivation, it follows that extension to a ring ofN
monomers would simply result in reducing all of the energy
eigenvalues by a factor ofN2. In the limit N f ∞, we obtain
the result for an infinite chain (with the common device of cyclic
boundary conditions), which is type C.

To compare the results for the dimer and larger rings with
those for the monomer, we have to consider how to populate
the energy levels. For the monomer, a valence-bond description
of switching the hydrogen bond from one side to the other of
segment b requires the movement of a pair of electrons. These
can be accommodated in the degenerate states of lowest energy,
which have quantum numbers(1 corresponding to opposite
senses of movement. Together these yield a standing wave rather
than a traveling wave with one nodal line across the ring.
Movement of just one pair of electrons can also switch all of
the hydrogen bonds simultaneously for any number of molecules
conjugated in a ring. On the other hand, it seems that the relevant
comparison must consider the energy lowering per molecule

produced by the conjugated pathway in rings of different size,
and this requires movement of one pair of electrons per
molecule. This can be regarded as representing a process of
switching one hydrogen bond per molecule. Then forN
molecules there are two electrons in each of the lowest energy
levels up to and including those with quantum numbers(N.
This yields standing waves with 1 toN nodal lines across the
ring.

The total energy lowering for a ring ofN molecules populated
by 2N electrons is then found by adapting eq 21 to be

The function ofN on the right-hand side of eq 23 is equal to 1
for N ) 1 and tends to1/3 asN f ∞. Hence, there is a significant
energy lowering caused by conjugation for rings of all sizes,
but the intramolecular hydrogen-bonded monomer and smaller
rings are favored, all things being equal. This conclusion is
broadly consistent with the hydrogen bond lengths tabulated
by the Ferrara group, which tend to be larger in chains7 than in
intramolecular rings,8 hence, implying greater stability of the
latter.

Discussion

We have treated a very simple model of a particle on a ring
that comprises two different kinds of segments corresponding
to conjugated paths and hydrogen bonds with different effective
masses in the different kinds of segments. Although the model
is simple, solving it and deducing its consequences for different
graph set patterns requires detailed analysis. We have shown
that the conjugation lowers the energy, consistent with the
Ferraragroup’sconceptofresonance-assistedhydrogenbonding,3-8

and that the model can fit data for intramolecular bonds of type
S with an electron effective mass in the hydrogen bond segment
of some 34 electron inertial masses. Using effective mass in
the context of hydrogen bonding is unusual but is helpful
conceptually. For example, it serves to give the proton an
implicit role in resonance-assisted hydrogen bonding by its effect
on the electron dynamics. The effective mass also indicates the
relative flatness of the hydrogen bond potential, and presumably
takes some account of proton tunneling. The present model for
a hydrogen-bonded ring of molecules is conceptually similar
to the coordinated proton tunneling observed by NMR relax-
ometry in a calixarene,20 although in that case no conjugated
segments intervened between the four hydrogen bonds.

The energy lowering applies not only to a simple intramo-
lecular hydrogen bond but also to a hydrogen-bonded dimer
and larger rings that in the limit become an infinite chain. In
practice, geometrical constraints on bonding will govern which
structure may reasonably occur, but our results indicate that an
intramolecular ring or a dimer will tend to be favored, consistent
with the graph-set classification that identifies such types of
hydrogen bonding (S and R) separately from chains (C) and
others (D). In our analysis, the chain is least favored, but this
structural feature may benefit from other favorable factors such
as the cooperative effect inR helices, whereby it becomes easier
to form second and subsequent hydrogen bonds.21 For example,
a molecular orbital comparison between hydrogen-bonded chains
of urea molecules and chains of 1,3-propanedione molecules22

∆E
N

) 2
N

h2

8mb(Nd)2[1 - 4F2

(n - 2 + 2F)2](12 + 22 + ... N2)

(22)

) h2

4mbd
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(n - 2 + 2F)2](N + 1)(2N + 1)

6N2
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indicates that the resonance-assisted mechanism is more im-
portant where covalent rather than electrostatic interactions
prevail.

Our treatment is most likely to be relevant to homonuclear
hydrogen bonds with the same electronegative atom at either
end, as originally discussed by the Ferrara group.3-8 However,
the qualitative effects are likely to be the same for heteronuclear
hydrogen bonds with different atoms at either end.9-13 This
would imply less delocalization, i.e., a value of the parameter
λ introduced earlier that departs from1/2, and presumably a
modified value of the effective massmb. It would also imply a
correspondingly more ionic rather than covalent structure22 that
would rather stretch the validity of the model. Nevertheless,
such an extension should be valuable in providing extended
interpretation.
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